
A Formal Method for Integrated System Design:

 How to Incorporate Cognitive Engineering Principles in a Systems Engineering Method

Michael Feary
MS262-4
NASA Ames
Research Center,
Moffett Field,
CA, USA
94035-1000

Lance Sherry
Honeywell
Inc./Rand Corp.
1200 S.Hayes St
Arlington, VA,
USA
22202-5050

Everett Palmer
MS262-4
NASA Ames
Research
Center,Moffett
Field,CA, USA
94035-1000

Peter Polson
Department of
Psychology
Campus Box
345
University of
Colorado

Summary

This paper describes a formal methodology (referred to as the Situation – Goal – Behavior
(SGB) Methodology) that has been used in the design of software logic based avionics
systems. It is expanded to incorporate some cognitive engineering guidelines and principles
for use in design of complex systems. The SGB method is referred to as formal because the
tool associated with the method has algorithms that are used to assist requirements
specification. The purpose of this paper is to describe the application of the method as a
framework for integrating the requirements for interface design, training, and procedure design
within the system engineering method. This paper first describes the method, how it can be
used, and then moves on to case studies which have shown the method to be useful for
incorporating information requirements in the design process.

The Situation – Goal – Behavior (SGB) Method

The Situation – Goal – Behavior (SGB) method is a means of organizing and providing a
common framework for all of the necessary groups involved in the design process of software
based systems. The SGB method is similar to many decision-making behavior modeling
environments, but with a different representation and approach to the problem of organizing
decision-making software. The primary focus of this paper is to integrate the use of cognitive
engineering guidelines and principles within a systems engineering method early in the design
cycle.

The main benefit of the SGB table format from a cognitive engineering perspective is the
ability to use the table as a type of description language for discussing design implementation
across the engineering, training, operational (flight standards, etc.), interface, and procedure
design groups. This early integration is necessary for the development of systems which are
easier to train, learn and operate. (Billings, 1996). The ultimate goal of the use of the
methodology would be to have a design change implemented based on a training requirement,
for the purposes of reducing training, while early in the design process.

Proper task specification and the communication of the goals of the system in automated
systems is crucial in complex, automated system development (Rasmussen, 1994). It is,
therefore, the intent of the SGB method to involve the users in specifying the mission, or the
tasks that the system will need to accomplish. If the task specification is successful and
complete, the design engineering task of making the system function properly should be
straightforward. Additionally, the training and interface development should be task-oriented

as well, if it were possible to put the task specification in a framework that is accessible to the
operational community (users, training developers, interface developers, etc.) in the design
cycle the result should be a more “user-centered” system.

How the SGB Method Works

The SGB method uses a tabular representation of a systems engineering model which
represents the decision logic of an automated system (Table 1). The table is composed of
Situation Inputs and States, Situations, Goals, Behaviors, and Behavior Outputs.

In a typical design cycle for a large complex system, the customer requirements for a new
system would ideally be presented by the customer or a representative of the customer from the
operational community (users, training, and procedure development representatives), to
provide the desired Goals and Behaviors for the system. As the Goals and Behaviors for the
system are defined, the engineering design team can provide the inputs required by the system
to determine the situation and perform the correct behavior. The formal systems engineering
portion of the method includes some algorithms to ensure that all possible combinations of
inputs are covered, and that no two combinations are the same, which would lead to a non-
deterministic system. Typically, this process will iterate several times, with engineers asking
the customer what behavior they might prefer for situations that were not defined originally.
To initially demonstrate the method and the use of the table, an example SGB table for a very
simple digital wristwatch which has one button and an 8 character wide display is provided
(Table 2).

Table 1. SGB Table. The X-axis of the table shows the Situation, Goal and Behavior descriptors, and the
Y-axis shows the Situation input and input-state names.

Goal 1 Goal 2
Situation A Situation B Situation C

Input I state a
state b

Input II state a
state b
state c

Behavior Description 1
Output state a

State b

Table 2. Example of SGB table usage

Display Date Display Time
Change to
date mode

Stay in date
mode

Change to
time mode

Stay in time
mode

Button Pushed true true
Not pushed true true

Current goal Time mode true true
Date mode true true

Display Date Display Time
Display Date true

Time True
Calculate p:Date date

m:Time time

Situation Inputs and States
Inputs and Input states are developed by the design engineers to try to meet the Goals specified
by the customer. The Inputs may represent a detected action by the user, an input that is
automatically detected by the system via a sensor, the result of calculation elsewhere in the
system or other means. Input states are used to quantify the input to enable the automation to
interpret the input value. In Table 1, Inputs I and II are represented by two and three states
respectively, however in actual tables there is no limit to the number of states per input. An
example of this will be shown in the following section.

How Inputs are Defined. As a cognitive engineering requirement, these inputs should be
meaningful to the operational community. This is easily met in a simple system, such as
watch, by using the button label. However, it can be a challenge with a larger, complex system
with multiple sensor inputs, and results of calculations elsewhere in the system which have no
physical attributes to provide inherently operationally meaningful names.

If the inputs can be given operationally meaningful names, then the interface design groups can
design feedback to the user on the accurate goal of the system. The example in Table 2 is a
simple illustrative example and because it does not have much software decision-making logic,
the input names are intuitive and operationally meaningful. However in larger, more complex
systems, inputs may not have names that are easy to understand and operational, especially if
the input refers to a portion of computer code, for which names may be arbitrary. It is
important to make the inputs operationally meaningful so that the situations resulting from the
combinations of inputs are operationally meaningful. If the situations are operationally
meaningful, users should be able to answer the questions “Why is it doing that?”, and “What is
it going to do next?”. Unfortunately, in many of today’s systems, these questions are asked all
too frequently.

Another requirement is to identify the inputs which are visible to the operator. Ideally, all
inputs would be visible to the operator, but the inputs which are not must be justified and
agreed upon by the different groups. Additionally, the situations which are defined by the
inputs which are not visible to the operator will have to be accommodated. These situations

will naturally lead to confusion, because there is a difference between the information the
operator is using and the information the system is using.

Formal analyses (e.g. model checkers) can perform an evaluation of the situations defined in
the system that the user can see (via controls and displays) versus those situations which the
user cannot see because they are based on system information which is not displayed or
requested by the user (operator).

Situations
Situations are a description of the combination of inputs intended to make the table readable
and easily understood by the customer. In Table 1, Situation A can be seen as a description of
the combination of Inputs I and II. The Situation descriptions can be very valuable to the
training, interface and procedure development communities later as they define the tasks of the
system, and as the system is reorganized. During the design cycle the situation description
becomes the foundation for organizing the hierarchy of goals.

How Situations are Defined. The Situations in the table provide a description of each of the
events that can occur in the system. In the watch example, the system needs to be able to cope
with at least two situations to display the date. First, if the system is currently displaying the
time, then pushing the button will display the date, but the system also needs to know the
current state so that pushing the button changes the situation, otherwise pushing the button
would cause the watch to always switch to date mode or always switch to time mode.

Goals
Goals refer to the mission objectives that the customer will be responsible for. In complex
systems, goal descriptions are a hierarchical grouping of the situations by the operational
community and are representative of the task to be accomplished. In this way, Goals are used
to organize what the design team thinks is most important for the user to know.

How Goals are Defined. Goals or Behaviors are generally the first requirement given by a
customer. In the example in Table 2, the customer for this simple wristwatch has specified two
goals and behaviors, Display Date and Display Time. In this simple example, the Goal and the
Behavior are the same, however the usefulness of the Goal representation becomes evident in
the design of larger and more complex systems, when decisions need to be made about what
priority should be given to different system behaviors. The interaction can be seen between the
Goal and the Behavior in the form of an ”m:” preceding the “Time” behavior output. This “m:”
refers to a sub-mission, or lower level table, which describes functions that the design team has
decided do not need to be immediately visible to the operator. In this case the “m:” refers to a
table which describes how to set the time on the watch.

Behaviors
The Behaviors refer to how the system will perform to meet to associated Goal. The customer
defines the required behavior for the system, and the engineering portion of the design team
uses the outputs and output states in a similar fashion to the inputs and input states to meet the
performance objectives. The Behaviors are natural language descriptions that are written by
the operational group of the design team and should closely match the goal.

How Behaviors are Defined. The behaviors are used in conjunction with the Goals to
organize the system around cognitive engineering principles. When the desired behaviors have

been specified by the customer, the design team can set about organizing the behaviors based
on importance and level of interaction required by the operator. Those behaviors which the
operator can have little effect on in the system are candidates for being made less visible and
those behaviors which the operator needs to know about to operate the system correctly need to
be made more visible. This is accomplished through the use of hierarchy with multiple tables,
as shown in Table 2 with the “m:” preceding a behavior output. In the method the highest level
tables are designed to be the most visible. This process needs to be carried out with the training
and interface design representatives.

The table does not automatically provide the best information requirements for a particular
system. These decisions require operational experts within the design team. What the tool does
is allow the different members of the design team to communicate with each other in a format
that forces them to be precise about what they intend. Later design decisions and
environmental requirements may force modifications to the information requirements, but
having the decisions documented in this format allows the changes to be made easily. Once all
of the information requirements for the display have been identified, the interface design team
can apply other human factors guidelines to aid in the design of the display. An example of this
is the concept of label following which has shown that users will tend to respond to a task by
using an interface object that most closely resembles the task, even if it is not the correct
action. (Franzke, 1995).

Another cognitive engineering practice is to match the input devices to the behaviors to avoid
functional overload. A functionally overloaded input device is one for which the behavior of
the input is dependent upon the state of the system at the time the input device is used. This
functional overload may easily become cognitive overload and error prone for the operator, if
that operator has poor feedback, is improperly trained, has memory lapses from fatigue, etc.
(Sherry et al., 2001)

Behavior Outputs
Combinations of behavior outputs are used by the engineers to meet the requested behavior by
the customer, and give feedback to the user.

How Behavior Outputs are Defined. From a systems engineering perspective, the output
states can be given different classifications within the SGB tool, examples of these include
assignment to another table (shown by the “m:” preceding a Behavior Output) or, assignment
of primitive functions (e.g. an equation) where the table stops and leads to a calculation that
can be made by the automation. The primitive function is represented by the “p:” in the Date
behavior output in Table 2. In this case, it refers to the watch calculating the date.

Summary of Cognitive Engineering Guidelines and principles using the method
• Develop, identify and organize Goals for the level of interaction
• Develop operationally meaningful inputs
• Identify/ensure inputs are visible to the operator
• Match the Goals/behaviors with display design
• Match the input devices to the behaviors to avoid functional overload

Application to aviation automation

Aircraft automation, particularly the automation surrounding vertical flight guidance, has been
cited as an area of training difficulty and a source of confusion during operation. A number of
incidents have been attributed to a lack of crew understanding of what the automation was
doing.

As part of a NASA program, the pieces of the SGB method were evaluated using aircraft
automation on a modern, commercial transport category aircraft very similar to the Boeing
MD-11 aircraft. To determine where the method should be focused, a survey was distributed
to Boeing MD-11 line pilots to assess where pilots thought they were having difficulty, and
where they would like the most help with the automation. (Feary et al., 1998) More than 75%
of the pilots surveyed felt that aspects of the Vertical Flight Guidance system were trained
inadequately, including the FMS Speed Logic, PROF (Vertical Navigation Mode), and the
interpretation of the Flight Mode Annunciator (FMA). The SGB Methodology was used to
design a new interface, procedures and training material for the Vertical Flight Guidance
system. These changes were evaluated experimentally (Feary et al., 1998), and examples from
these experiments should demonstrate the utility of the method for some applications.

Table 3 shows a small fraction of the Vertical Guidance for a modern commercial air transport.
(Honeywell Cockpit Pilot’s Guide, 1994). The Goals, Situations, inputs, input states, and
behaviors are representative of those used in the larger table, although the inputs have been
reduced to correspond with the different behaviors depicted. Specifically, Table 3 shows 3
behaviors used in the descent phase of flight.

Before discussing the meaning of Table 3, some background domain information needs to be
defined. The input state Reference altitude refers to the altitude specified by the pilot using a
knob on the Autopilot control panel, generally referred to as the Mode Control Panel (MCP).

Starting with the input column, the input VG Type refers to the level of automation being used.

Vertical Navigation (VNAV)/ Profile(Prof) mode refers to the names of the most highly
automated modes in current aircraft. In VNAV/Prof (the names differ for different aircraft
manufacturers), speed and altitude targets are specified in the Flight management Computer
(FMC) and flown automatically. Airmass – VNAV/Prof refers to slightly less automated mode
for which the speed targets are automatically generated by the FMC, but the altitude targets are
not. Finally the AFS mode refers to one of the least automated modes, for which the pilot
selects both speed and altitude targets.

Table 3. Example of SGB table of a vertical guidance system. In the table, “1” refers to a true state.

Goals Airmass Descent Late Descent Descent Path Overspeed
Inputs Situations/

Input States
 Aircraft is
Descending

(without
both Prof
and FMS
Speeds)

Aircraft is
descendin
g early of
D/A Path

and
Prof/FMS

speed
engaged

A/C is
level

late of
the

D/A
Path

level at
the ref.
Alt and
the ref.

alt

Aircraft is
descending
late of D/A

Path and
Prof/FMS

speed
engaged

Aircraft
exceeds
speed

tolerance
while

descending
on D/A path

Aircraft is
level with a
speed that
exceeds the
speed
tolerance
when ref. Alt
is lowered
and a/c
captures D/A
path

VG Type VNAV /Prof 1 1 1 1
Altitude Airmass –

VNAV/Prof
1 1

Airmass - AFS
Aircraft
Altitude

Above distance
Referenced D/A

path

1 1

below distance
Referenced D/A

path
Aircraft
Speed

Overspeed for
D/A path

1 1

Within speed
tolerance for

D/A path

1 1 1 1

Aircraft
Altitude

Within D/A
Path capture

region
Not Within D/A

Path capture
region

1 1 1 1

Reference Has not changed
Altitude Has changed 1 1 1

Behaviors Airmass
Descent to

the D/A path
D/A path

speed

Referenced
recapture
using the
descent
profile

Airmass
Descent
the D/A
the late
profile

Referenced
to recapture
path using

descent speed

Airmass
Descent D/A

path path
descent

Referenced
around the at
the D/A speed

profile

Altitude M:Climb/Cruise
Target M:Descent/App

roach
Descent/
Altitude

Approach
Target

Descent/
Altitude

ApproachTar
get

Descent/
Altitude

ApproachTarg
et

Speed M:Late descent Late
Speed

Descent
Target

Target M:
Descent/Approach

Descent/
Speed

Approach
Target

M: Airmass
Descent

Airmass
Speed

Descent
Target

P: engine-out
Speed/ P: THRUST |HOLD

Altitude P: PITCH ||IDLE PITCH | | IDLE PITCH| | IDLE PITCH | | IDLE

Control
Mode

M: D/A DESCENT
SPEED/Altitude

The Speed/Altitude Control Mode refers to how the automation will control the airplane to
meet the guidance requirements. For example an aircraft may pitch for a certain rate of climb
or descent, or the aircraft may pitch for a particular airspeed. In another, unique case the
automation may pitch the aircraft to remain on fixed earth-referenced path referred to as the
Descent/Approach(D/A). The D/A path takes into account Air Traffic Control (ATC) speed
and altitude restrictions and computes a descent path such that the engines should remain at
idle thrust, resulting in the most fuel efficient descent possible should the aircraft stay on the
path.

The behaviors depicted in the table exist to deal with exception cases which would cause an
aircraft to deviate from the D/A path. The Airmass Descent case accounts for scenarios during
which the FMC has not computed a D/A path, this may happen if the pilot does not enter a
destination in the FMC, or for the short time while the FMC is computing the path. The Late
descent behavior accounts for a scenario for which the aircraft is not allowed to descend until
passing the optimum descent path (due to ATC constraints), or a case in which the aircraft has
too much energy to stay on the optimum descent path (an unforecast tailwind would cause
this). The Path Descent Overspeed case accounts for a scenario similar to the Late Descent
case, however in this case the aircraft the aircraft starts on the path, but once reaching a certain
speed threshold faster than the assigned speed target, the aircraft flies away from the D/A path
at a predetermined speed.

The behaviors shown in Table 3 are all different, however the display in many modern
commercial aircraft are very similar for the different behaviors, and in at least one they are
exactly the same presentation to the pilot with little to no displays available to differentiate
between them.

Case Study 1: The Behavior based Flight Mode Annunciator (FMA)
The number of distinguishable display events should be directly related to the number of
different Goals/Behaviors of the system. This is required for users to be able to answer the
question “What is it doing now?”, which is a question frequently asked by users of complex,
time-critical and highly dynamic systems (e.g. aircraft automation) today.

That simple guideline was used to evaluate an automation display of a modern transport
category airplane, and several cases of non-compliance were found. To evaluate the impact of
this non-compliance on one automation display, referred to as the FMA, Feary et al., (1998)
conducted a study with a modified display in a certified simulator with actual airline pilots who
were current and very experienced in the type of aircraft being evaluated.

Guidance-Based FMA (Experimental)

Control-Based FMA (MD-11)

Speed Target Speed Mode Altitude Mode Altitude
Target

Goal

355 NAV1 LATE DESCENT 23ooo

Roll Mode

355 PITCH NAV1 IDLE 23ooo

Roll Mode

Figure 1. Control vs. Guidance-Based FMA

The experiment involved a change in the organization and wording of the Flight Mode
Annunciator display, as it is seen in the cockpit of a modern, transport category aircraft. To
provide more conceptual system information on the display, the new display annunciated the
Goals of the system. These Goals were based on the Behaviors in the SGB representation. The
current display was compared to the new display (Fig.2) and, combined with a training
package, distributed to participants in both conditions (to equalize the group). The displays
were tested by 27 current line pilots, with at least 1 year of experience on the MD-11 (an
airplane with the same display and vertical guidance to the experimental display), flying a short
flight in a Fixed Base Simulator. The pilots in the new display condition showed significantly
less errors (p>.03) for the experimental scenario.

Case Study 2: Modification of a functionally overloaded Control Device
An example of functional overloading was observed on the MCP of a modern, transport
aircraft. The current MCP for the aircraft under investigation uses one button PROF/VNAV to
engage a higher level of automation, and depending upon the situation of the automation at the
time, pushing the button may result in one of at least 13 different behaviors. It is interesting to
note that in at least one aircraft, the FMA displays the letters PROF to refer to descending on
the D/A path, while at the same time using a button labeled PROF to refer to changing between
more and less automated modes of flight. By clearly defining the behaviors in the system, the
complete SGB tables of the vertical guidance system (not presented here) show this
contradiction clearly. Additionally, using the table as a starting point for further analysis, it can
be seen that descending on the D/A path is fundamentally different than any of the other modes
in that it has a fixed earth-reference point. A proposed solution is shown in Figure 2, resulting
in the simple addition of a DES PATH button to refer to the unique mode, and some
modification of the logic to restrict automatic switching to other descent modes. (Sherry et al.,
2001)

FMS
SPD

) MACH
IAS

IAS (

push

pull

+

-

) METER

push

FT
FEE T (

pull

+

-

PROF

) FPA
FPM

V/S(

+
- AU TOFLIGHT

 A/T
FMS
SPD

) MACH
IAS

IAS (

push

pull

+

-

) METER

push

FT
FEE T (

pull

+

-

) FPA
FPM

V/S(

+
- AU TOFLIGHT

 A/T
DES
PATHPROF

Figure 2. Comparison of modern Autopilot Control Panel with MCP designed according to the cognitive
engineering principles. A separate input device (DES PATH button) provides the option to arm the

capture and tracking of the FMS optimum path. This button has only one behavior – to capture and track
the path.

Current and Future Work

At the time of writing an initiative has begun to link the Situation Goal – Behavior - Method to
task analytic techniques to evaluate usage and procedure techniques. This work will consist of
building a model of a pilot’s conception of a portion of the Vertical Guidance System and
making a formal comparison with Situation – Goal – Behavior model of the same system. It is
hoped that the task analytic model will reveal areas of possible pilot error, and be able to
predict areas of the system for which operators lack conceptual understanding.

New versions of the tool are being developed and evaluated, and parts of the tool are publicly
available. Requests can be sent to mfeary@mail.arc.nasa.gov or
Lance.Sherry@cas.honeywell.com.

References

Billings, C., 1997, Human-Centered Aviation Automation, Mahwah, NJ, Lawrence Erlbaum Associates.

Feary, M., Sherry, L., Palmer, E., and Polson, P (1998) Aiding Vertical Guidance Understanding. NASA
Technical Memorandum 1998-112217. NASA Ames Research Center, Moffett Field, CA, USA.

Franzke, M. (1995), Turning research into practice: characteristics of display-based interaction, in Proc.
CHI'95 Human Factors in Computer Systems, ACM, pp. 421-428

Honeywell (1994). MD-11 Cockpit Pilot’s Guide (Revision 1). Honeywell Document C29-1101-01-01.
Phoenix, AZ., USA

Irving, S., Polson, P., and Irving, J. (1994) A GOMS Analysis of the Advanced Automated Cockpit. In
Proceedings of CHI 94 conference. Boston, MA.

NTSB (1999) Safety Recommendation. A-99-39 through 44.

Rasmussen, J. (1994) Cognitive Systems Engineering. New York, USA: John Wiley and Sons, Inc.

Sherry, L., Feary, M., Polson, P., Mumaw, R., and Palmer, E. (2001) A Cognitive Engineering Analysis
of the Vertical Navigation (VNAV) Function. NASA Technical Memorandum 2001-210915. NASA
Ames Research Center, Moffett Field, CA, USA.

Vicente, K. (1999) Cognitive Work Analysis. Lawrence Erlbaum Associates.Mahwah, NJ.

